## Lecture 6

Lecturer: Ronitt Rubinfeld

## Outline

- Random Walks
- Markov Chains
- Stationary Distributions
- Hitting, Cover, Commute times


## Markov Chains

A Markov chain is a random process specified in part by $\Omega=$ set of all "states" (or use $V$ and call them nodes in a graph). In this class the set of states are always finite. We then want to consider $X_{o} \ldots X_{t} \in \Omega$ the sequence of visited states with the following property.

## Markov Property

Next state depends only on the current state and not on the history of states. These state transitions are said to be memoryless.

$$
\operatorname{Pr}\left[X_{t+1}=Y \mid X_{0}=x_{0}, X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{t}=x_{t}\right]=\operatorname{Pr}\left[X_{t+1}=Y \mid X_{t}=x_{t}\right]
$$

We can assume wlog transitions are independent of time as we can create a new set of states $\Omega \times T$ where $T$ is the set of times.

$$
P[i, j]=\operatorname{Pr}\left[X_{t+1}=i \mid X_{t}=j\right]
$$

Markov chains with this property are called time-homogeneous or stationary Markov chains. This allows the transition probabilities $P[i, j]$ to be represented by a transition matrix $P_{i, j}$.

## Example 1



$$
P=\begin{gathered}
\\
1 \\
1 \\
2 \\
3
\end{gathered}\left[\begin{array}{ccc}
\frac{3}{4} & \frac{1}{4} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}\right]
$$

For this Markov chain : $\Omega=\{1,2,3\}$ and the for the corresponding graph the edges are weighted the transition probability $P_{i, j}$.

## Random walk

Random walks are an important special case where the state transitions are uniform on the subset corresponding to neighbors of node.

## Definition 2 Random Walk

A random walk on $G=(V, E)$ is a sequence $s_{0}, s_{1} \ldots$ of nodes where $s_{0}$ is a start node. At each step $i$, $S_{i}$ is picked uniformly from $\operatorname{out}\left(s_{i}\right)$, where $\operatorname{out}\left(s_{i}\right)$ is the set of out edges of the state $s_{i}$.

The transition probability for the random walk is defined as :

$$
P(i, j)=\left\{\begin{array}{cc}
(i, j) \in E & \frac{1}{\mid \text { degout }_{\text {out }}(i)} \\
\text { otherwise } & 0
\end{array}\right.
$$

## Example 3



$$
\left.P=\begin{array}{c} 
\\
1 \\
1 \\
2 \\
3
\end{array} \begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]
$$

In this random walk on a digraph the probability of getting to adjacent vertices is uniform.

## Properties of Markov Chains

The following are properties of Markov Chains.

## Normalization

$$
\forall i \in \Omega: \sum_{j \in \Omega} P(i, j)=1
$$

This condition gives a normalization of out going state transitions.

## Transitions

Transitions probabilities for $t$ steps

$$
P^{t}(i, j)= \begin{cases}t=1 & P(i, j) \\ t>1 & \sum_{k} P(i, k) P^{t-1}(k, j)\end{cases}
$$

This is just matrix multiplication

$$
P^{t}=\underbrace{P \ldots P}_{t \text { times }}
$$

The initial distribution is given by

$$
\pi^{0}=\left(\pi_{1}^{0} \ldots \pi_{n}^{0}\right)
$$

where $\pi_{i}^{0}=\operatorname{Pr}[$ start at node $i]$
The after on step the intial distribution becomes the following distirubtion :

$$
\pi^{i}=\pi^{0} P
$$

at step $t$ the evolution of the inital distribution is given by the following :

$$
\pi^{i}=\pi^{0} P^{t}
$$

## Special Cases of Markov Chains

Definition 4 Stocastic matrix
A (left) stocastic matrix $P$ is a square matrix where all rows sum to 1. All Markov chains are stocastic matrices.

$$
\text { stocastic matrix } \equiv \forall i \in \Omega: \sum_{j \in \Omega} P_{i, j}=1
$$

Definition 5 Doubly stocastic matrix
A doubly stocastic matrix $P$ is a square matrix where all rows and colums sum to one.

$$
\text { doubly stocastic matrix } \equiv \forall i \in \Omega: \sum_{j \in \Omega} P_{i, j}=\sum_{j \in \Omega} P_{j, i}=1
$$

An example of a doubly stocastic matrice is a random walk on a regular (indegree matches out degree) directed graph.

$$
P(i, j)=\frac{1}{\left|\operatorname{deg}_{\text {out }}(i)\right|}=\frac{1}{\left|\operatorname{deg}_{\text {in }}(j)\right|}
$$

## Definition 6 Irreducible Markov chain

An irreducible Markov chain has the property that for any two states $i, j$ there is a $t$ such that after $t$-steps it is always possible to get from $i$ to $j$ (with a non-zero probability).

$$
\forall i, j \in \Omega: \exists t=t(i, j): P^{t}>0
$$

This given a directed weighted graph $G=(V, E)$ of a markov chain the following graph can be constructed

$$
G^{\prime}=(V,\{(i, j) \in E: P(i, j)>0\})
$$

The markov chain represented by $G$ is irreducible iff the directed graph $G^{\prime}$ is strongly connected.
Definition 7 Ergodic Markov chain
An ergodic Markov chain is a markov chain if there is an $t$ after which there is a positive probability to getting to any state.

$$
\exists t \in \mathbb{N}: \forall i, j \in \Omega: \forall t^{\prime}>t: P^{t^{\prime}}>0
$$

This is a stronger property than irreducible. An example of non-ergodic markov chain is a bipartite graph for a given $i \in \Omega$ reachability of $(i, i)$ is affected determined by the parity of $t$.

## Example 8



This markov chain is not erogdic as $P^{t}(i, i)=t \bmod 2$.
Definition 9 Aperiodic Markov chain
A aperiodic Markov chain is morkov chain such that for any state the returns to that state occurs at irregular times.

$$
\forall i \in \Omega: \operatorname{gcd}\left\{t: P^{t}(i, i)>0\right\}=1
$$

A way of making a graph aperiodic is to add loops.

## Example 10

The following graph is aperiodic


$$
P=\begin{array}{cc}
1 & 2 \\
1 \\
2
\end{array}\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

The following graph is aperiodic but not erogdic.
Example 11


Theorem 12 Erodic iff Irreducible and aperiodic.

## Stationary Distribution

A stationary distribution $\Pi$ is a state distribution where

$$
\forall y \in \Omega: \Pi(y)=\sum_{x \in \Omega} \Pi(x) P(x, y)
$$

or equivalently $\Pi=\Pi P$.
In example 8 there is no such $\Pi$ as the state oscillates between the two states. In the example 11 there are many stationary distributions $\{(i, 1-j): i \in[0,1]\}$. The set of Markov chains where there exists $\Pi$ such that $\Pi$ is unique is given by the following theorem.

Theorem 13 Every erodoic Markov chain has a unique stationary distribution.
Stationary distribution of undirected non-biparite graph is :

$$
\Pi(i)=\frac{\operatorname{deg}(i)}{2|E|}
$$

So $d$-regular graphs have $\Pi$-uniform distributions.

## Hitting times

The hitting time is the expect number of steps it takes to hit a given state j starting from state i .

$$
h_{i, j}=E[\text { time starting at } i \text { return to } j]
$$

Theorem $14 h_{i, i}=\frac{1}{\Pi_{i}}$ for erogdic Markov Chains.

## Cover time

Cover time of an undirected graph is the expected number of steps for a random walk to hit every node in $G$ starting from a give node.

$$
C_{i}(G)=E[\text { size of set start at } \mathrm{u} \text { and hit every node in } \mathrm{G}]
$$

If no start node is given the maximum time over all nodes is taken.

$$
C(G)=\max _{i \in \Omega} C_{i}(G)
$$

## Example 15

$C\left(K_{n}^{*}\right)=\theta(n \ln n)$ where $K_{n}^{*}$ is complete graph with $n$ vertices. Each vertice has a self loops at each node making $K_{n}^{*}$ aperiodic.
Each step is uniformly random and covering the graph becomes picking a vertex radomly with replacement until all vertices are sampled. This is equivalent to the coupon collector's problem which states it takes $n \log n$ steps to sample $n$ items with replacement. Thus it takes $n \log n$ time to cover $C\left(K_{n}^{*}\right)$

## Example 16

$C\left(L_{n}\right)=\theta\left(n^{2}\right)$ where $L_{n}$ is a line of $n$ vertices.
The expected distance a random walk on the line travels after $n$ steps is $\theta(\sqrt{n})$. Thus to cover $n$ vertices it takes $\theta\left(n^{2}\right)$ to cover $n$ vertices.

## Example 17

$C(\operatorname{lollipop}(n))=\theta\left(n^{3}\right)$ where $\operatorname{lollipop}(n)$ is a complete graph $K_{n / 2}$ attached to the line $L_{n / 2}$.
If a random walk starts on the line then it takes $\theta\left(n^{2}\right)$ to cover the line and end up in the cluster which takes $\theta(n \log n)$ to cover giving a total complexity of $\theta(n \log n)$.
If a random walk starts in the cluster it enters the line with probability $\frac{2}{n-2}$. Thus it takes $O(n)$ steps to exit the cluster and even then it is likely to wander back for each of the $O\left(n^{2}\right)$ steps to cover $L_{n / 2}$. Thus we get $O\left(n^{3}\right)$ expected time to cover lollipop( $n$ )

Theorem $18 C(G) \leq \theta(m * n)$ actually $<8 m(n-1)$
Definition 19 Commute time
The "commute time" is the number of steps starting from $i$ to $j$ and back to $i$.

$$
C_{i, j}=h_{i, j}+h_{j, i}=\operatorname{Exp}[\text { the number of steps to start at } i \text { hit } j \text { and return to } i]
$$

Lemma $20 \forall(i, j) \in E: C_{i, j} \leq O(m)$
Proof next time

Lemma $21 C(G)=\theta\left(n^{3}\right)$
Proof Start a a vertex $v_{0}$ let $T$ be any spanning tree rooted at $v_{0}$. The number of edges $=n-1$. Take a walk in this tree starting at $v_{0}$. (a dfs walk).
$v_{0}, v_{1} \ldots v_{2 n-2}=v_{0}$ is a depth first traversal each edge $v, v_{i+1}$ appears twice (when you come down and when you return). What is the cover time of the graph.

$$
C(G) \leq \sum_{i=0}^{2 n-3} h_{v_{j} v_{j+1}}
$$

$\operatorname{using} C_{(i, j)}=h_{i, j}+h j, i$

$$
=\sum_{(i, j) \in T} C_{i, j}
$$

using lemma 20

$$
=O\left(\sum_{(i, j) \in T} m\right)
$$

whic reduces to

$$
=O(n, m)
$$

for $C(\operatorname{lolipop}(n))=O(n, m)=O\left(n^{3}\right)$

